
Self-organisation in an Agent Network via Learning

(Extended Abstract)
Dayong Ye

University of Wollongong
NSW 2522 AU

dy721@uow.edu.au

Minjie Zhang
University of Wollongong

NSW 2522 AU
minjie@uow.edu.au

Danny Sutanto
University of Wollongong

NSW 2522 AU
danny@elec.uow.edu.au

ABSTRACT
In this paper, a decentralised self-organisation mechanism in
an agent network is proposed. The aim of this mechanism is
to achieve efficient task allocation in the agent network via
dynamically altering the structural relations among agents,
i.e. changing the underlying network structure. The mech-
anism enables agents in the network to reason with whom
to adapt relations and to learn how to adapt relations by
using only local information. The local information is ac-
cumulated from agents’ historical interactions with others.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Experimentation

Keywords
Self-organisation, Learning, Adaptation

1. INTRODUCTION
To cope with complex tasks, agents are usually organised

in a network where an agent interacts only with its imme-
diate neighbours in the network. Self-organisation, which is
defined as“the mechanism or the process enabling the system
to change its organisation without explicit external command
during its execution time [3]”, can be employed in agent net-
works to improve the cooperative behaviours of agents. In
this paper, our contribution focuses on modification of ex-
isting relations between agents to achieve a better alloca-
tion of tasks in distributed environments. Towards this end,
we propose a self-organisation mechanism via multiagent Q-
learning. In contrast to the K-Adapt mechanism, proposed
by Kota et al. [2], our mechanism, called Learn-Adapt, is
unbiased for both agents which jointly adapt their relation.

2. SELF-ORGANISATION MECHANISM
In our model, an agent network comprises a set of collabo-

rative agents, i.e. A = {a1, ..., an}, situated in a distributed
task allocation environment. The task allocation environ-
ment presents a continuous dynamic stream of tasks that
have to be performed. Each task, Θ, is composed of a set

Cite as: Self-organisation in an Agent Network via Learning (Extended
Abstract), Dayong Ye, Minjie Zhang and Danny Sutanto, Proc. of 9th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2010), van der Hoek, Kaminka, Lespérance, Luck and Sen
(eds.), May, 10–14, 2010, Toronto, Canada, pp.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

of subtasks, i.e. Θ = {θ1, ..., θm}. Each subtask, θi ∈ Θ,
requires a particular resource and a specific amount of com-
putation capacity to fulfill. In addition, each subtask has a
relevant benefit paid to the agent which successfully com-
pletes the subtask. A subtask θi is modeled as a token Δi

which can be passed in the network to find a suitable agent
to complete. Each token consists of not only the information
about resource and computation requirement of the corre-
sponding subtask, but also the token traveling path which
is composed of those agents that the token has past.

In the agent network, instead of a single type of neigh-
bours, there are three types of neighbours, namely peer,
subordinate and superior neighbours, which are constituted
by two relations, i.e. peer-to-peer and subordinate-superior
relations. The formal definitions of these two relations are
given below.

Definition 1. (Peer-to-Peer). A peer-to-peer relation,
denoted as “∼” (∼⊆ A×A), is a Compatible Relation, which
is reflexive and symmetric, such that ∀ai ∈ A : ai ∼ ai and
∀ai, aj ∈ A : ai ∼ aj ⇒ aj ∼ ai.

Definition 2. (Subordinate-Superior). A subordinate-
superior relation, written as “≺” (≺⊆ A × A), is a Strict
Partial Order Relation, which is irreflexive, asymmetric and
transitive, such that ∀ai ∈ A : ¬(ai ≺ ai), ∀ai, aj ∈ A : ai ≺
aj ⇒ ¬(aj ≺ ai) and ∀ai, aj , ak ∈ A : ai ≺ aj ∧ aj ≺ ak ⇒
ai ≺ ak.

In order to change relations between agents, there are
seven different atomic actions defined in our model, which
are form ∼, form ≺, form
, dissolve ∼, dissolve ≺,
dissolve
 and no action. For example, if agent ai per-
forms action form ≺ with agent aj , ai will become a sub-
ordinate of aj . Obviously, actions form ≺ and form

are the reverse action of each other, namely that if ai per-
forms form ≺ with aj , aj has to take form
 with ai.
The atomic actions can be combined together. The mean-
ings of combination actions can be easily deduced from the
meanings of atomic actions. For example, the combination
action, dissolve ≺ +form ∼, which is taken by ai with
aj , implies that ai first dissolves aj from ai’s superior and
forms a peer relation with aj . It should be noted that an
agent at different time steps might possess different available
actions.

The aim of our self-organisation mechanism is to improve
the efficiency of task allocation in the agent network via
changing the network structure, i.e. changing the relations
among agents. Our mechanism is based on the past infor-
mation of the individual agents. Specifically, agents use the
information about the former task allocation processes to

1495

1495-1496

evaluate their relations with other agents. We formulate
our self-organisation mechanism by using a multiagent Q-
learning approach. The reason for choosing the Q-learning
approach is that it provides a simple and suitable methodol-
ogy for representing our mechanism in terms of actions and
rewards. Before describing our self-organisation mechanism,
we first consider a simple scenario with two agents, ai and
aj , and three available actions for each agent. The reward
matrix of the two agents is displayed in Table 1.

Table 1: Reward Matrix of ai and aj

�����ai

aj form ≺ form ∼ form

form
 r1,1

i , r1,1
j r1,2

i , r1,2
j r1,3

i , r1,3
j

form ∼ r2,1
i , r2,1

j r2,2
i , r2,2

j r2,3
i , r2,3

j

form ≺ r3,1
i , r3,1

j r3,2
i , r3,2

j r3,3
i , r3,3

j

Each cell (rx,y
i , rx,y

j) in Table 1 represents the reward
received by the row agent (ai) and the column agent (aj),
respectively, if the row agent ai plays action x and the col-
umn agent aj plays action y. Algorithm 1 demonstrates our
self-organisation mechanism in pseudocode form. The first

Algorithm 1: self-org. Mechanism according to ai

1 Candidatesi ← ai selects agents in the network;
2 for each aj ∈ Candidates do
3 Acti ← available actions(ai, aj);
4 Actj ← available actions(ai, aj);
5 for each x ∈ Acti, y ∈ Actj do
6 Initialise Qix and Qjy arbitrarily;
7 for k = 0 to a predefined integer do;
8 calculate πix(k) and πjy(k);
9 Qix(k + 1) = Qix(k)+

πix(k)α(
∑

y rx,y
i πjy(k) − Qix(k));

10 Qjy(k + 1) = Qjy(k)+
πjy(k)α(

∑
x rx,y

j πix(k) − Qix(k));
11 end for
12 end for
13 〈xopti, yopti〉 ← argMaxmatch(x,y)(Qix + Qjy);
14 ai, aj take actions xopti and yopti, respectively;
15 end if
16 end for

component (Line 1) refers to the reasoning aspect about se-
lecting agents to initiate the self-organisation process, which
is described in Algorithm 2. After selection, both agents, ai

and aj , estimate which actions are available at the current
state (Lines 3 and 4). Then, ai and aj learn the Q-value of
each available action, separately (Lines 5-11). In Line 6, the
Q-value of each action is initialised arbitrarily. In Line 8,
πix indicates the probability regarding agent ai taking the
action x. To calculate πix, we employ the ε-greedy explo-
ration method devised by Gomes and Kowalczyk [1] shown
in Equation 1, where 0 < ε < 1 is a small positive number.

πix =

{
(1 − ε) + (ε/n), if Qix is the highest

ε/n , otherwise
(1)

Furthermore, in Line 9, Qix is the Q-value of action x
taken by agent ai. In Lines 9 and 10, 0 < α < 1 is the
learning rate.

When finishing learning Q-values, ai and aj (Line 13) co-
operate to find the optimal actions for both of them, where
match(x, y) is a function which is used to test whether the
actions x and y that are taken by ai and aj , respectively, are
matched. An action is only matched by its reverse action.

Therefore, ai and aj have to cooperate to find the actions,
which can be matched together and make the sum of their
Q-values become maximum.

Algorithm 2 illustrates the reasoning aspect of each agent
for selecting a group of agents to initilise the self-organisation
process. Each agent has not only the tokens it currently
holds but also all the previous tokens incoming and outgoing
through it. Then, each agent uses the local information pro-
vided by the tokens to choose candidates. Firstly, from Lines
3 to 5, agent ai identifies the owner of each token stored in
ai’s token list, Tokensi, and counts the number of tokens
from each owner. On the one hand, if the number of one
owner exceeds a predefined threshold and this owner is not
ai’s peer, or direct subordinate or direct superior, this owner
will be added into the candidates set (Lines 6-9). This can
be explained that if an agent is not a neighbour of agent ai

but often delegated tasks to ai previously, ai might want to
adapt the relation with this agent. On the other hand, if the
number of one owner exceeds another predefined threshold
and this owner is ai’s peer, or direct subordinate or direct
superior, this owner will be also appended into the candi-
dates set (Lines 10-13). This can be explained that if an
agent, which is a neighbour of ai, delegates very few tasks
to ai, then ai might also want to alter the relation with this
agent.

Algorithm 2: Candidates selection of each agent
1 for each ai ∈ A do
2 Candidatesi ← ∅;
3 for each Δk ∈ tokensi do
4 statistics of Δk.owner;
5 end for
6 if ∃ # of same Δk.owner > thre1 and
7 Δk.owner �∈ Neig∼

i ∨ Neig�
i ∨ Neig≺

i then
8 Candidatesi ← Candidatesi ∪ {Δk.owner};
9 end if
10 if ∃ # of same Δk.owner < thre2 and
11 Δk.owner ∈ Neig∼

i ∨ Neig�
i ∨ Neig≺

i then
12 Candidatesi ← Candidatesi ∪ {Δk.owner};
13 end if
14 end for

3. CONCLUSION
This paper introduces a novel self-organisation mechanism

which aims to adapt structural relations among agents in a
network to achieve efficient task allocation. By using this
mechanism, a pair of agents can independently evaluate each
available action and jointly make a decision about taking an
action to change their relation.

4. ACKNOWLEDGMENTS
This research is supported by Australian Research Coun-

cil Linkage Projects (LP0991428) and a URC Research Part-
nerships Grants Scheme, from the University of Wollongong
with the collaboration of TransGrid, Australia.

5. REFERENCES
[1] E. R. Gomes and R. Kowalczyk. Dynamic analysis of

multiagent q-learning with e-greedy exploration. In Proc. of
ICML’09, pages 369–376, Montreal, Canada, Jun. 2009.

[2] R. Kota, N. Gibbins, and N. R. Jennings. Self-organising
agent organisations. In Proc. of AAMAS’09, pages 797–804,
Budapest, Hungary, May 2009.

[3] G. D. M. Serugendo, M.-P. Gleizes, and A. Karageorgos.
Self-organization in multi-agent systems. The Knowledge
Engineering Review, 20(2):165–189, 2005.

1496

